

AP^{*} Calculus Review

The Fundamental Theorems of Calculus

Teacher Packet

AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material. Copyright © 2008 Laying the Foundation[®], Inc., Dallas, TX. All rights reserved. Visit: <u>www.layingthefoundation.org</u>

The Fundamental Theorems of Calculus

- I. If f is continuous on [a, b], then the function $F(x) = \int_{a}^{x} f(t) dt$ has a derivative at every point in [a, b], and $\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$.
- II. If f is continuous on [a, b], and if F is any antiderivative of f on [a, b], then $\int_{a}^{b} f(t) dt = F(b) - F(a).$

Note: These two theorems may be presented in reverse order. Part II is sometimes called the Integral Evaluation Theorem.

Don't overlook the obvious!

1. $\frac{d}{dx}\int_{a}^{a} f(t) dt = 0$, because the definite integral is a constant 2. $\int_{a}^{b} f'(x) dx = f(b) - f(a)$

Upgrade for part I, applying the Chain Rule

If $F(x) = \int_{a}^{g(x)} f(t) dt$, then $\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x))g'(x)$. For example, $\frac{d}{dx} \int_{2}^{x^{3}} \sin(t^{2}) dt = ((\sin(x^{3})^{2})(3x^{2}) = 3x^{2} \sin(x^{6}))$

<u>An important alternate form for part II</u> $F(b) = F(a) + \int_{a}^{b} f(t) dt$

[Think of this as: ending value = starting value plus accumulation.]

For example, given that $\int_{3}^{12} f'(x) dx = -4$ and f(3) = 35, find f(12). Using the alternate format, $f(12) = f(3) + \int_{3}^{12} f'(x) dx = 35 + (-4) = 31$.

Page 2 of 12

Sample Problems

Multiple Choice - No Calculator

1. $\frac{d}{dx} \int_{2}^{x} \ln t \, dt =$ (A) $\ln x$ (B) $\ln 2$ (C) $\frac{1}{x}$

(D) $\frac{1}{2}$ (E) $\ln x - \ln 2$

2. If
$$g(x) = \int_{\pi}^{\pi x} \cos(t^2) dt$$
, then $g'(x) =$
(A) $\sin(\pi^2 x^2)$ (B) $\pi x \sin(\pi^2 x^2)$ (C) $\pi x \cos(\pi^2 x^2)$
(D) $\cos(\pi^2 x^2)$ (E) $\pi \cos(\pi^2 x^2)$

3.
$$\frac{d}{dx} \int_{\sin x}^{4} \sqrt{1+t^2} dt =$$

(A) $\sqrt{1+\sin^2 x}$ (B) $-\cos x \sqrt{1+\sin^2 x}$ (C) $-\sqrt{1+\sin^2 x}$
(D) $\cos x \sqrt{1+\sin^2 x}$ (E) $\sqrt{1+\cos^2 x}$

4. If f has two continuous derivatives on [5, 10], then $\int_{5}^{10} f''(t) dt =$ (A) f'''(10) - f'''(5) (B) f(10) - f(5) (C) f'(10) - f'(5)(D) f''(10) - f''(5) (E) f''(5) - f''(10)

Page 3 of 12

5. The graph of f is given, and g is an antiderivative of f. If g(3) = 6, find g(0).

6. The graph of f is given. $F(x) = \int_0^x f(t) dt$

Which of the following statements is true?

- (A) F decreases on (1, 2).
- (B) *F* has a relative minimum at x = 2
- (C) F decreases on (2, 4)
- (D) *F* has a relative maximum at x = 1.
- (E) *F* has a point of inflection at x = 4.

Page 4 of 12

7.
$$\frac{d}{dx} \int_{x}^{x^{2}} \tan(t) dt =$$
(A) $\tan(x^{2}) - \tan x$
(B) $\tan x - \tan(x^{2})$
(C) $\tan x - 2x \tan(x^{2})$
(D) $2x \tan(x^{2}) - \tan x$
(E) $\sec^{2}(x^{2}) - \sec^{2} x$

8.
$$\int_{1}^{e} \left(x - \frac{5}{x}\right) dx =$$

(A) $\frac{1}{2}e^{2} - \frac{11}{2}$ (B) $\frac{1}{2}e^{2} - \frac{9}{2}$ (C) $e^{2} - \frac{11}{2}$
(D) $\frac{1}{2}e^{2} - \frac{3}{2}$ (E) $\frac{11}{2} - \frac{1}{2}e^{2}$

Page 5 of 12

Free Response 1 – No Calculator

The graph of f is given. It consists of two line segments and a semi-circle. $g(x) = \int_{1}^{x} f(t) dt$

- (a) Find g(0), g(1), and g(5).
- (b) Find g'(2), g''(2), and g'''(4) or state that it does not exist.
- (c) For what value(s) of x does the graph of g have a point of inflection? Justify your answer.
- (d) Find the absolute maximum and absolute minimum values of g on [0, 5]. Justify your answer.

Laying the FOUNDATION'

Multiple Choice - Calculator Allowed

- 1. If $g(x) = \int_0^x \sin^2 t \, dt$, then g'(2) =(A) 0 (B) 0.001 (C) 0.173 (D) 0.827 (E) 1.189
- 2. A car sold for \$16,000 and depreciated at a rate of $2e^{x^2}$ dollars per year. What is the value of the car 3 years after the purchase?
 - (A) \$206.17
 (B) \$2889.09
 (C) \$13,110.91
 (D) \$16,206.17
 (E) \$18,889.09
- 3. The graph of *f* is given, and F(x) is an antiderivative of *f*. If $\int_{2}^{4} f(x) dx = 7.5$, find F(4) F(0).

Page 7 of 12

4. The acceleration of an object in motion is defined by $\sqrt{1+t^2}$. The velocity at t = 6 is 22. Find the velocity at t = 1.

5.
$$h(x) = \int_{1}^{x} g(t) dt$$
 and $g(t) = \int_{0}^{t^{2}} \frac{\sqrt{1+u^{2}}}{u} du$. Find $h''(2.5)$.
(A) 1.013 (B) 1.077 (C) 2.154 (D) 5.064 (E) 12.659

6. Find
$$\int_{-2}^{2} f(x) dx$$
 if $f(x) = \begin{cases} 2x^2, & -2 \le x \le 0\\ \sin 2x, & 0 < x \le 2 \end{cases}$
(A) 0 (B) 4.507 (C) 5.403 (D) 6.161 (E) 10.667

- 7. Let g(x) be an antiderivative of $\frac{x^3}{\ln x}$. If g(2) = 3, find g(6).
 - (A) 120.552 (B) 123.552 (C) 208.122
 - (D) 211.122 (E) 214.122
- 8. $h(x) = \int_0^{2x} (e^{\cos t} 1) dt$ on (3, 6). On which interval(s) is *h* decreasing?
 - (A) (3.927, 5.498) (B) (5.498, 6)
 - (C) (3, 4.712) (D) Always decreasing on (3, 6)
 - (E) Never decreasing on (3, 6)

Page 8 of 12

Free Response – Calculator Active

Let
$$g(x) = \int_{1}^{x} (5 - 8\sqrt{\ln t}) dt$$
 for $x > 1$. Let $h(x) = \int_{1}^{x^2} (5 - 8\sqrt{\ln t}) dt$ for $x > 1$.

- (a) Write an equation of the tangent to g at x = 3.
- (b) What is h'(x)?

(c) On which open interval(s) is *g* decreasing? Justify your answer?

(d) Find all *x* values for which *h* has relative extrema. Label them as maximum or minimum and justify your answer.